Action of long-chain fatty acids in vitro on Ca2+-stimulatable, Mg2+-dependent ATPase activity in human red cell membranes.
نویسندگان
چکیده
Human red cell membrane Ca2+-stimulatable, Mg2+-dependent adenosine triphosphatase (Ca2+-ATPase) activity and its response to thyroid hormone have been studied following exposure of membranes in vitro to specific long-chain fatty acids. Basal enzyme activity (no added thyroid hormone) was significantly decreased by additions of 10(-9)-10(-4) M-stearic (18:0) and oleic (18:1 cis-9) acids. Methyl oleate and elaidic (18:1 trans-9), palmitic (16:0) and lauric (12:0) acids at 10(-6) and 10(-4) M were not inhibitory, nor were arachidonic (20:4) and linolenic (18:3) acids. Myristic acid (14:0) was inhibitory only at 10(-4) M. Thus, chain length of 18 carbon atoms and anionic charge were the principal determinants of inhibitory activity. Introduction of a cis-9 double bond (oleic acid) did not alter the inhibitory activity of the 18-carbon moiety (stearic acid), but the trans-9 elaidic acid did not cause enzyme inhibition. While the predominant effect of fatty acids on erythrocyte Ca2+-ATPase in situ is inhibition of basal activity, elaidic, linoleic (18:2) and palmitoleic (16:1) acids at 10(-6) and 10(-4) M stimulated the enzyme. Methyl elaidate was not stimulatory. These structure-activity relationships differ from those described for fatty acids and purified red cell Ca2+-ATPase reconstituted in liposomes. Thyroid hormone stimulation of Ca2+-ATPase was significantly decreased by stearic and oleic acids (10(-9)-10(-4) M), but also by elaidic, linoleic, palmitoleic and myristic acids. Arachidonic, palmitic and lauric acids were ineffective, as were the methyl esters of oleic and elaidic acids. Thus, inhibition of the iodothyronine effect on Ca2+-ATPase by fatty acids has similar, but not identical, structure-activity relationships to those for basal enzyme activity. To examine mechanisms for these fatty acid effects, we studied the action of oleic and stearic acids on responsiveness of the enzyme to purified calmodulin, the Ca2+-binding activator protein for Ca2+-ATPase. Oleic and stearic acids (10(-9)-10(-4) M) progressively inhibited, but did not abolish, enzyme stimulation by calmodulin (10(-9) M). Double-reciprocal analysis of the effect of oleic acid on calmodulin stimulation indicated noncompetitive inhibition. Addition of calmodulin to membranes in the presence of equimolar oleic acid restored basal enzyme activity. Oleic acid also reduced 125I-calmodulin binding to membranes, but had no effect on the binding of [125I]T4 by ghosts. The mechanism of the decrease by long chain fatty acids of Ca2+-ATPase activity in situ in human red cell ghosts thus is calmodulin-dependent and involves reduction in membrane binding of calmodulin.
منابع مشابه
Mechanism of action of "ruthenium red" compounds on Ca2+ ionophore from sarcoplasmic reticulum (Ca2+ + Mg2+)- adenosine triphosphatase and lipid bilayer.
Sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase was previously shown to have Ca2+-dependent and -selective ionophoric activity when tested in oxidized cholesterol lipid bilayer membranes (Shamoo, A. E., and MacLennan, D. H. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 3522). ruthenium red, a known inhibitor of (Ca2+ + Mg2+)-ATPase, is found to inhibit the Ca2+-ionophoric activity associated with (Ca2...
متن کاملAnalogue-specific action in vitro of atrial natriuretic factor on human red blood cell Ca2+-ATPase activity.
Specific atrial natriuretic factor (ANF) analogues have been found to have inhibitory activity in vitro in a calmodulin-dependent, human red blood cell membrane Ca2+-adenosine triphosphatase (ATPase) model. Studied at 10(-8) to 10(-6) M concentrations, atriopeptin I (residues 127-147 of rat prepro-ANF sequence) and atriopeptin III (residues 127-150) progressively inhibited Ca2+-ATPase activity ...
متن کاملRetinoic acid inhibits calmodulin binding to human erythrocyte membranes and reduces membrane Ca2(+)-adenosine triphosphatase activity.
Ca2(+)-ATPase activity in human red cell membranes is dependent on the presence of calmodulin. All trans-retinoic acid inhibited human red cell membrane Ca2(+)-ATPase activity in vitro in a concentration-dependent manner (10(-8) to 10(-4) M). In contrast, retinol, retinal, 13-cis-retinoic acid and the benzene ring analogue of retinoic acid did not alter enzyme activity. Purified calmodulin (up ...
متن کاملPresence of a high-affinity Ca2+- and Mg2+-dependent ATPase in rat peritoneal mast-cell membranes.
Purified perigranular and plasma membranes isolated from rat peritoneal mast cells were examined for Ca2+- and Mg2+-dependent ATPase activity. Isolated perigranular membranes contained only a low-affinity Ca2+- or Mg2+-dependent ATPase (Km greater than 0.5 mM). The plasma membranes contained both a low-affinity Ca2+- or Mg2+-dependent ATPase (Km = 0.4 mM, Vmax. = 20 nmol of Pi/min per mg), as w...
متن کاملP28: The Effects of Omega-3 and 6 Fatty Acids on Hippocampus and Learning
One of the most nervous system evolution are memory and learning in humans. Learning is a skill that enhances synaptic activity in the hippocampus of prefrontal cortex. In fact, basic passive learning is communication between the conditioned and Unconditioned stimulation. Passive learning involves three steps: habit, education and remember. According to the results of investigations, the hippoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 248 2 شماره
صفحات -
تاریخ انتشار 1987